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Ovsiannikov [1] established the transformation of the desired functions and
independent variables in the differential-equations of the motion of an
inviscid and non-heat-conducting gas, for which these equations retain their
form. This transformation is considered in detail in [2 and 3]. If some
exact solution of the gas dynamics equations 1is inown, the transformation
formulas afford the oportunity of obtalning a new exact solution of the same
equations, and of thereby comparing some other £ described by the new solu-
tion to the given gas flow E£°. The flow £ should have elther the same or
a higher number of dimensions as compared with the flow £’, whereupon the
method turns out to be applicable only for specific values of the adilabatic
index, depending on the number of dimensions of the flow Z and equal to

ﬁé for three-dimensional, 2 for two-dimensional and 3 for one-dimensional
flow.

The density and pressure in the flow £ turn out to be inversely propor-
tional to some power of t—g¢ , where ¢t 1is the time, and ¢ an arbitrary
constant with the dimensionality of time; hence, the results of [2 and 3
for conventional gas dynamics are extended to the dynamics of an expanding
gas.

If we hence obtain a flow £ with a larger number of dimensions from a
given one- or two-dimensional flow £’, the additional veloclty components
turn out to be equal to the quotient of a divislion of the appropriate coor-
dinates by the difference t—¢ . Proceeding from here, we can generalize
the results of [2 and 3 somewhat by establishing the existence of such a
flow £’ as may be compared to the solution yleldirig some flow £ 1in a range
of a lesser number of dimensions.

Let us take the equations of motion of a perfect gas
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The notations are the same as in [2]. Let the set of functions
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satisfy the system of equations (1) to (3).
Then the set of functions
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will satisfy the system of equations of two-dimensional gas motlon which i1s
obtained from the system (1} to {3) if the third of Equations (1) is dis-
carded, we set w = 0 and consider all functions independent of =z . Hence
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and the adiabatic index is 5/, . The a, ¥, ¢, in a8ll the formulas written
above are arbitrary constants with the dimensionality of time. Thelr vali-
dity can be shown by direct substitution of {5) and {6) into the mentioned
equations of two~dimensional gas motion, and taking into account here the
form of (1) to (3) used when substituting the solution (4).

It can be shown analogously that the solution of the system (1) to (3)
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corresponds to the solution of the one~dimensional gas motlon equatlons
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with adiabatic index again equal to °/;.
In the same manner, 1t may be found that if the set of functions
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satisfies the system of two-dimensional gas motlion equations
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will satisfy the system of equations corresponding to one~dimensional gas
motion with the adlabatic index 2 .
For example, let us have the solution of the two-dimensional problem in
the form
R ot P Y . -
u = tv ! v =T a0 p =g (I), =p’ (1)

Here u, v are constants. According to (7) and (8), the solution of the
one~dimensional gas motion equations
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corresponds to 1t.

Hence, a one-~dlimensional gas motion has been obtalned with the same law
of velocity u change, but with some other time dependence of the pressure
and density. The solutlon obtalned may be considered as a solutlon of the
one~dimensional Cauchy problem for which the gas state (for v'> 0)

T+ by, bye |

v 9=pu=(—c)p(0), p=po =\, P(0)

is given at the initial instant ¢ = O .
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